
Draf
t

Large Synoptic Survey Telescope (LSST)
Data Management

DM Release Process

Gabriele Comoretto

DMTN-106

Latest Revision: 2019-05-08

D R A F T

Abstract

Release procedure applicable to all Data Management SW products.

LARGE SYNOPTIC SURVEY TELESCOPE

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-05-08

Change Record

Version Date Description Owner name
2019-02-04 DM Release Process Gabriele Comoretto

D R A F T ii D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-05-08

Contents

1 Introduction 1

1.1 Applicable Documents . 1

2 Definitions 2

2.0.1 Environment . 2

2.1 Software Product . 2

2.2 Dependencies . 4

2.3 Software Release . 4

2.4 Binary Packages . 4

2.5 Distribution . 5

2.6 Versioning and Naming . 5

2.6.1 Branch Naming . 6

3 Change control 7

3.1 Issue Management . 7

3.2 Release Note . 7

4 Software Release Procedure 9

4.1 Development . 9

4.2 Nightly and Weekly builds . 9

4.3 Announcement . 10

4.4 First Release Candidate . 10

4.5 Other Related Artifacts . 11

4.6 Release Candidates Validation . 12

4.7 Resolving Problems . 12

4.8 Additional Release Candidates . 14

4.9 Final Release . 14

5 Patch Releases 15

D R A F T iii D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-05-08

6 Incorporating third party code 16

6.1 Support . 17

6.2 Testing . 17

6.3 Migration . 17

A Status and Problems 18

A.1 Status of the implementation . 18

A.1.1 Packaging System . 18

A.1.2 Distribution System . 18

A.1.3 SW Products Identification . 18

A.1.4 Environment . 19

A.1.5 Build Tools . 19

A.2 Open Problems . 20

A.2.1 SW Product Composition . 20

A.2.2 Code Fragmentation . 21

A.2.3 Binaries Persistence . 21

B Proposed Improvements 22

C References 23

D Acronyms used in this document 23

D R A F T iv D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-05-08

DM Release Process

1 Introduction

This release procedure is general and valid for all software products in the LSST Data Man-
agement subsystem. It is an abstraction of SQR-016, but it is assumed that the Jenkins builds
used for the Science Pipelines can be applied in the same way to other software products.

The release engineer should be in charge of the release activities documented here. All devel-
opers are not affected, except for backporting of fixes into release branches, when required.

Section A summarizes the actual development process, and reports the derived problems that
affect the release process.

1.1 Applicable Documents

LDM-148 DM Architecture
LDM-294 DM Project Management Plan

D R A F T 1 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-05-08

2 Definitions

This document uses certain terms which are often overloaded. In this section we define these
terms as intended in this document.

2.0.1 Environment

An environment is a set of libraries, executables and configurations, that are predefined for
a specific context or function.

An environment is usually needed in the following contexts:

• software development: the environment includes all libraries and tools required to build
and debug a software product

• software test and verification: the environment includes, on top of build and debug
tools, additional tools to permit/facilitate the testing and validation activities.

• operations: the environment shall include only tools required for the execution of op-
erational product. It shall not contain any build or debug tools. It shall be optimized for
the operational activities. 1

These are the most common uses of an environment. Additional scenarios can be identified.

In some cases, for simplicity, the same environment is used in development, tests and op-
erations, but this does not justify the inclusion of the environment definition in the software
product itself.

2.1 Software Product

A software product is a component of the subsystem (DM) product tree.

The following activities are done on a SW Product:

• development activities
1In case a problem is found in operation the first thing to do is to replicate it in a different environment, where

also debug and further analysis is possible.

D R A F T 2 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-05-08

• test activities, usually unit tests and system test

• release activities

• packaging activities

• operational activities, in stand alone mode, in an operational pipeline or as part of a
service. Some SW Products are libraries, therefore are not operationally, but used as
dependencies by other software products.

A software product shall correspond to a single repository. In other words, there shall be a
correspondence 1:1 between software products and Git packages. All the software product
dependencies are different software products and therefore released separately.

This is not the case of DM, where a software product is comprised of multiple Git packages.
The compromised solution in this case is to have a GitHubmetapackage that identify the soft-
ware product. All Git packages composing the software product are dependencies in a GitHub
metapackage and released at the same time. In this case, a Git package shall be related only
to one software product, and it is not by himself a software product. In other words, there is
a correspondence 1:many between software product and Git packages. There shall never be
a many:many correspondence.

The following elements should not be part of a software product:

• build tools, otherwise we will have build tools deployed in operations.

• environment definition, since the environment depends on the final instantiation of the
software product that are not visible in the development phase.

These elements shall follow a parallel development / release process.

Test data should also not be included in a software product. However including small datasets
for enabling the unit tests is not a bad practice.

The content of this subsection is a prerequisite for any release procedure to be applied.

D R A F T 3 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-05-08

2.2 Dependencies

A packagemay only depend on other packages. Third party dependencies are either packages
or part of the conda environment.

The dependency information is provided in each Git package in specific dependency files ac-
cording to the build system e.g. requirements.txt, EUPS table file, etc. These files , and hence
the dependencies, are considered part of the source code and controlled and versioned in
the same manner.

2.3 Software Release

A software release is a consciously identified tag of a software product repository documented
with a software release note. The identifier is usually of the form M.n.p.

The tag in the Github repository and the software release note is sufficient to identify the
release, and therefore for a developer to resolve the dependencies, build the binaries and
execute the software.

The software release is amonolithic snapshot of the software product to be used as is, or in its
corresponding binary package(s), by the downstream processes or users. In theory, it should
be possible to identify the release with a checksum calculated automatically on the delivered
package. That checksum can be used to identify the release installed in an environment, or
included in a distribution.

2.4 Binary Packages

A binary package is a package containing executable binaries for the corresponding release.
It is created by building the SW provided in the release tag. Binary packages can be created
to support multiple platforms (such as Linux, OSX, windows) if required.

In some cases, these packages do not contain compiled binaries, but executable scripts or
just text files.

Binaries should be generated only once, and made available for their use by dependent soft-
ware or for deployment.

The majority of DM software is using EUPS for binary packaging. Other platforms can be

D R A F T 4 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-05-08

considered, for example conda or pypi. Software products implemented in java are using
jar/war binary packaging. 2

2.5 Distribution

A distribution is a collection of binary packages to be deployed together.

A distribution can be used for different purposes:

• to make available software releases for operations or commissioning

• to test (integration, validation, operation rehearsals) software releases

• to provide software releases to external collaborators. In this case source code can be
distributed instead of binaries.

Distributions may also include non binary packages or source code, as needed.

The main DM software product currently being distributed is the Science Pipeline Stack - this
may be used in a few ways see https://pipelines.lsst.io/install/index.html

2.6 Versioning and Naming

DM will switch to Semantic Versioning 3, this will help improve dependency management,
and make managing patch releases more comprehensible. The versioning schema will have
3 digits separated by a ”.” . For example :
16.0.0

Generalizing, the versioning scheme is the following:

𝑀.𝑛.𝑝

where

• M is the major version identifier,
2So far there are a few technologies used to handle binary packages. It is recommended to assess and optimize

them, converging to use only one. Conda seems to have become a standard for python based projects.
3https://semver.org/spec/v2.0.0.html

D R A F T 5 D R A F T

https://pipelines.lsst.io/install/index.html
https://semver.org/spec/v2.0.0.html

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-05-08

• n is the minor version identifier,

• p is the patch level identifier

The repository at this stage would be tagged 16.0.0 . One should note in this scheme there are
no padding zeros thus:
16.1.0 ≠ 16.10.0

DM software is currently versioned using two digits separated by a ”.” . For example Science
Pipelines latest release:
17.0 The first number is the major version and the the second number is the minor version.

2.6.1 Branch Naming

In order to clearly distinguish release branches from tags and other branches, the following
naming scheme is suggested:

b.<M>.<n>.x

whereM is the major version and n is the minor version starting from 0.

The letter b indicates that this is a branch. The letter x is a placeholder. It indicates that
versions in a specific branch will have a fixedM.n but different patch level, where 0means no
patch.

D R A F T 6 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-05-08

3 Change control

The DMCCB is in charge of approving the changes which go in all releases (major, minor, or
patch). The DM Release Plan LDM-564 provides the expected schedule for major features,
based on the P6 milestones 4.

Changes to the release plan thus are at least partially controlled the LSST change control
process as milestones are moved or impacted by other changing milestones. Other changes
not covered by themilestones such as features or content need to be proposed to the DMCCB
using RFC Jira issues.

Patch release requests should use an RFC Jira issue which must be approved by the DMCCB.
The issue should specify what needs to be fixed in the release and why, it shall specify DM
issues that are requested to be included in the patch.

This process is documented in LDM-294, sections 3.6 and 7.4.

3.1 Issue Management

The release is identified in Jira using a release issue.

All issues to be included in a release shall be added as blocking to the release issue.

Note that by introducing the field Fix in Version(s), will permit having the same information in a
much simpler way. Both release issue and Fix in Version(s) fields can be used in parallel. Once
the release is done, it will also be possible to complete the field Fix in Version(s) with the exact
release, ensuring in this way that each issue is fully documented and self consistent5.

3.2 Release Note

The release note documents the content of a release.

The following information should be provided:

• Installation instructions. This is usually a manually written set of instructions.

• Narrative section describing the content of the release, this summary should be writ-
4The DM Release Plan is in the process to be updated, see DM-17001
5process to be automated

D R A F T 7 D R A F T

https://jira.lsstcorp.org/browse/DM-17001

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-05-08

ten by a person not auto generated. The T/CAM is responsible for making sure this is
provided.

• List of jira issues included in a release. This information can be extracted from Github.
Completed epics will be highlighted while other issues will listed to be comprehensive.

• Technical information like the GitHub tag, dependencies, etc. can be extracted automat-
ically from Github or other tools.

D R A F T 8 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-05-08

4 Software Release Procedure

This release procedure has been derived from the Stack release playbook SQR-016.

4.1 Development

Development activities are not part of the release process, but are the starting point for a
stable and reliable master branch in all Github software packages. The Developer Guide lays
out the guidelines and process. All changes are done on ticket branches and reviewed using
the Pull Request mechanism before merging to master.

Each time a change is merged into master, the following activities should be performed:

• continuous integration build of the Github software package (SW product)

• if unit tests pass, generate binary packages

• build downstream dependencies: CI build on SW products that depend from the newly
build SW product.

At themoment, continuous integration is done on a ticket branch prior tomerging changes to
master. Binary packages (EUPS) and docker images for distribution are made available with
the nightly and weekly builds (see next section 4.2).

4.2 Nightly and Weekly builds

Nightly and weekly builds are useful for a number of reasons such as :

• Maintaining a healthy code base.

• Forcing us to maintains build scripts.

• Finding breaking changes which got checked in and passed CI.

• A starting point for a development activity.

• A starting point for a release.

D R A F T 9 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-05-08

Nightly builds do not generate tags in the Github repositories. When a weekly build is done, a
corresponding tag in the Github repository is created. Though weekly builds are considered
releases in Github, from a release management point of view they are not releases - they are
reference builds and, when they meet the criteria in 4.4, release candidate starting points.

4.3 Announcement

The preparation of the next release is announced using a community post. This has to be
done few days before the release activity starts.

In this way, all contributors will be able to provided feedback, for example additional issues
expected to be included in the release. Based on the feedback, DMCCB can take corrective
actions such as delaying the release.

4.4 First Release Candidate

The first release candidate on a release is created when:

• all issues that are supposed to be included in it have been implemented and merged
into master.

• a weekly build has been completed successfully.

• the product owner confirms that the weekly is good to go. 6

In case a weekly is presenting problems that may affect the release, the DMCCB will decide
if delay the release start or kick–off the process and fix the problems in forthcoming release
candidates.

Following steps have to be used to create the first release candidate:

• create a release candidate in GitHub (Codekit7)

• execute a build (using Jenkins job run-rebuild)

• create and publish the packages. For the Science Pipelines, EUPS packages are created
and published in the package repository:

6This is not a full test, but just ensures that there are no regressions nor problems at a first glance.
7Code management toolkit https://github.com/lsst-sqre/sqre-codekit

D R A F T 10 D R A F T

https://github.com/lsst-sqre/sqre-codekit

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-05-08

– source packages (using run-publish Jenkins job)

– binaries packages (using tarball Jenkins job)

• create the distribution package. Still for the Science Pipelines, a docker image is generate
and made available in the docker repository:

– distribution generated and published using build-stack Jenkins job

This procedure should be applied for all software products in the DM product tree.

The parameters required are:

• GIT_REFs: the existing Git references, for example ”w.2018.52”. This is the stable weekly
build identified.

• GIT_TAG: the release candidate to be generated, for example ”M.n.p.rc1”

For the Science Pipelines, the above steps are collected in one single Jenkins job:

releases/official-release

Note that for all software product using EUPS, like for example the Science Pipelines, release
candidates need to start with a 𝑣.

4.5 Other Related Artifacts

Together with the creation of the release candidate, other artifacts may need to be branched,
and possibly have a first release candidate also:

• Documentation: to consolidate all information relevant for the new release. This in-
cludes the release note. As an example, for Science Pipelines, the packagepipelines_lsst_io
need to be branched.

• Environment definition packages, like for example packages containing conda environ-
ment files (YAML).

• Distribution packages; still referring to the Science Pipelines, the package lsst where
newinstal.sh is developed, need to be branched also.

D R A F T 11 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-05-08

• Test data packages.

• Other packages not tagged automatically, but required to be inline with the released
software.

4.6 Release Candidates Validation

The release candidate needs to be validated.

In an ideal case, a test campaign following a specific test plan should be conducted, demon-
strating that the release candidate, and therefore the forthcoming release, is behaving as
required and expected.

Practically, the validation in many cases can be:

• installation/configuration of the binaries packages, or distribution image; usually done
manually

• inspect of the installation, that all expected files and configuration are there

• execution of some demo package available case by case depending of the SW product

• try some use cases in order to prove that the release candidate is behaving properly

• ask downstream users to act as beta testers.

For Science Pipelines, a characterization report is produced, in order to document the release
outputs. This is a new document created for each major release.

4.7 Resolving Problems

In case problems are found during the validation, a DM issue needs to be created in Jira. This
issue shall follow the usual development process as described in the developer guide. The fix
will be first implemented in a ticket branch, reviewed andmerged to master. Once the fix has
been proved to work, it can be backported to the release branch.

The release branchwill be created only for the packages to be fixed, andwill follow the naming
convention described in 2.6.1.

D R A F T 12 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-05-08

Backporting mechanism can be summarized as follows 8:

• Create the backporting Jira issue DM-XYZ with subject Backport issue DM-XXX on release
branch bM.n.x

– DM-XXX Jira issue has to be already in status reviewed or done, and the correspond-
ing ticket branch already merged to master.

– The ticket branch must not be deleted until the backporting is concluded.

• Create the backporting ticket branch tickets/DM-XYZ based on DM-XXX ticket branch

• Backport the fix from master to the release branch using the following command:

– 𝑔𝑖𝑡𝑟𝑒𝑏𝑎𝑠𝑒 − −𝑜𝑛𝑡𝑜𝑏𝑀.𝑛.𝑥.

• Open a PR from the backported ticket branch to merge into the release branch

• Merge the backported branch into the release branch when the PR is approved

• Remove the backported ticket branch and the original ticket branch

Note that porting mechanism is a development activity, under the responsibility of the devel-
opment team, and therefore needs to be documented in the developer guide and removed
from this document. This backporting procedure is just an example. Additional backporting
mechanism can be proposed.

In a special case, that an issue cannot be fixed on master, the ticket branch can be opened
based on the release branch.

The porting can be applied also in case that an issue, implemented on master after the the
first release candidate has been created, has to be included in the release.

The DMCCB has to overview the backporting of issues to the release branch, and take correc-
tive actions if needed. Backportingmay require a considerable use of development resources
and/or delay in the final release availability.

8This needs to be documented in the DevGuide

D R A F T 13 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-05-08

4.8 Additional Release Candidates

Once one or more issues have been fixed on the release branch, a new release candidate has
to be generated. The same steps used for generating the first release candidate, need to be
used also in this case, with different parameters:

• GIT_REFs: the starting Git references, for example ”bM.n.x M.n.p.rc1”. Where available
the release branch will be used instead of the previous release candidate

• GIT_TAG: the release candidate to be generated, for example ”M.n.p.rc2”

Further release candidates can be created just repeating the process with the appropriate
parameters. The release candidate 3 will require following parameters:

• GIT_REFs: the starting Git references, for example ”bM.n.x M.n.rc2”. Where available the
release branch will be used instead of the previous release candidate

• GIT_TAG: the release candidate to be generated, for example ”M.n.rc3”

Generalizing, a release candidate N will be based on the release branch and the previous
release candidate N-1.

4.9 Final Release

Once a final release candidate Nf has been identified, the final release can be created.

To create the final release, just repeat the same steps used to created the release candidates,
using following parameters:

• GIT_REFs: ”M.n.p.rcNf”

• GIT_TAG: ”M.n.p”

Note that the final release is from a point of view of content identical to the last release can-
didate.

Final tags need to be done manually for all the additional documentation, environments and
other packages.

D R A F T 14 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-05-08

5 Patch Releases

In the case that the DMCCB approves a proposed patch release, the process shall be:

• create the release branches from the available release tags on the Github packages im-
pacted by the fixes (if they don’t exist)

• backport the requested issues

• create a release candidate, for exampleM.n.1.rc1using the the sameapproach explained
above (4.8)

• validate the release candidate

• fix eventual problems found in the release candidate and repeat the last 2 steps, create
a new release candidate a validate it, until a valid release candidate is found

• create a final release as described above (4.9).

D R A F T 15 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-05-08

6 Incorporating third party code

The dev guide has a procedure 9 for making a third part package for inclusion in the pipelines
distrib. In the future theymay be other distributions as well. This procedure should be slightly
modified such that the RFC is always flagged for CCB approval.

A distribution is defined in Section 2.5 an example distribution would be the docker container
available as the kernel in the notebook aspect of the science platform. A collaboration may
wish to get some non LSST code included in that distribution.

There are several reasons to include third part code in our distributions:

1. There are packages which we use in our code e.g. starlink_ast. These are standard
dependencies. Currently these are put in lsst github org and probably should not be.
Apart from that this is a well understood reason for third party code.

2. There are packages which we want to use when working with the deployed software.
Pandas might be such an example - we don’t need it to build or run our code but its sure
handy for interaction with the data.

3. A collaborator has a package which depends on our code and is intended for some form
of post processing. Another example here would be an algorithm we want to use such
as ngmix which we do not necessarily need to support. This is whatmost people on LSST
are thinking about under the topic of third party software.

In all three cases theDMCCB should decide if a package is to be included in a given distribution.
We currently only distribute pipelines and this is the code basemost likely to be affected here.
One could see a need to distribute AP separately fromDRP in production - the principle would
remain the same a package may be included in one or more distributions. The DMCCB needs
to control the list of such packages.

We currently handle dependencies such as in type 1 above using using EUPS and soon via
conda. We could use the same mechanism for the other types of packages also, we should
require the third party contributed packages are conda installable.

9https://developer.lsst.io/stack/packaging-third-party-eups-dependencies.html

D R A F T 16 D R A F T

https://developer.lsst.io/stack/packaging-third-party-eups-dependencies.html

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-05-08

6.1 Support

We should take care to clarify that inclusion of a package in an LSST distribution does not
imply support for that package. By support we mean that LSST personnel will not necessarily
fix this package if has a problem. Packages included especially of the type 3 above, could be
included as is not even necessarily built by our CI system nor do they need to conform to any
LSST rules apart from licensing. These should not live in the LSST github org. We currently
conflate inclusion in the distrib with inclusion in the org. We should create another github org
such as lsst-community for these packages. Though if we use something like conda to install
the requisite packages this is not strictly necessary. 10.

6.2 Testing

In the case of type 2 above wemaywant to have a certain level of testing tomake sure it works
when deployed.

In the case of type 3 above we should work with collaborators to include tests which exercises
our code and interfaces in the way the code expects - this should be enough to alert us and
our collaborators that the codemay not workwith some new release. The earlier we can catch
this the better.

6.3 Migration

If some collaborator code should prove very useful and is demonstrated on say 1% of data
to provide results the community would like to have for all data. Then if the the Project Sci-
ence Team and DMCCB agree it should migrate to LSST proper and become supported. This
would require work from the contributor and LSST staff to get the package to conform to an
acceptable amount with LSST rules 11.

10Even if we do support packages like starlink_ast we should not put them under the LSST org I feel
11We should have a set of acceptable rules e.g. it is essential to have unit tests, it is desirable to have a clean

commit history.

D R A F T 17 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-05-08

A Status and Problems

A.1 Status of the implementation

At the time this technote is in writing, March 2019, only lsst_distrib package is released and
distributed.

A.1.1 Packaging System

The following technologies are already used in DM for packaging:

• Eups: for the majority of DM packages. This included third party libraries that require
customization, or that are not available in the conda channels. The lsst DM binary Eups
repository is hosted at https://eups.lsst.codes/.

• Sonatype Nexus: for java based DM software developed packages

• Conda: for packages public available, that can be used without any customization

• Pip/PiPy: for python packages public available. In some cases for packages pip/PiPy is
used for DM developed python packages, for example docsteady.

A.1.2 Distribution System

The main tool used for distribution to operations and science community is Docker.

In pipelines.lsst.io instructions are provided on how to deploy a Science Pipelines docker
image.

A second distribution approach is also provided, using the script newinstall.sh. This scripts
permits to retrieve a specific Science Pipelines build or release available in the Eups repository,
and setup the environment for its build and execution.

A.1.3 SW Products Identification

The software products are developed using multiple GitHub packages. A GitHub metapack-
age, for example lsst_distrib for Science Pipelines, is identifying the software product. All Git
packages of a software product are dependencies in that metapackage, direct or indirect.

D R A F T 18 D R A F T

https://eups.lsst.codes/
pipelines.lsst.io

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-05-08

GitHub teams are used to differentiate between two types of Git packages:

• Data Management team: it includes all dependencies of lsst_distrib

• DM Externals team: for packages used to build and distribute lsst_distrib but that they
are not part of it.

There is a third team, DM Auxiliary, that identifies auxiliary packages to be tagged. Git pack-
ages in this team are not part of the software product, nor distributed with it.

Note that in reality, lsst_distrib does not correspond to a software product, but to a distribution
product. It includes not only the different pipelines, but also test data and build tools.

A.1.4 Environment

The conda environment to be used for building the Science Pipelines is defined in the Git
package scipipe_conda_env. No releases nor tags are made on the conda environment Git
package.

TO BE CLARIFIED: how are java build environments managed?

A.1.5 Build Tools

The build tools used to build Science Pipelines software are available in lsstsw and lsst_build
Git packages.

The Jenkins scripts also are an important part of the tooling, facilitating a large quantity of
actions, like, test a ticket branch, automate releases, or provide periodic build (weekly/daily).

The tools picture is completed by codekit, which permits interactionwithmultiple GitHub pack-
ages. Just as an example, it is used to create the same tag on all the GitHub packages com-
posing a defined product automatically, instead of creating it manually.

TO BE CLARIFIED: which are java build tools?

D R A F T 19 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-05-08

A.2 Open Problems

In this section a list of problems derived from the current development approach are enu-
merated.

While these problems are unresolved the only release process suitable for DM is to release
the entire codebase each time.

Their resolution may lead to a different development approach, and therefore the proposed
release procedure may need to be reviewed accordingly.

A.2.1 SW Product Composition

A GitHub package may be included in more than one software product.

This make impossible to apply in a consistent way the release procedure to a SW products
that is not the Science Pipelines. The reason is explained in the following example.

Product A is composed by 100 Git packages.

Product B is composed by 80 Git packages.

70 Git packages are shared by both products.

When release 1.0 is done on product A, all 100 packages will be tagged, and corresponding
Eups packages are created. This will include the 70 shared packages.

One week lather, product B is ready for the release 1.0, and some of the 70 shared packages
have been updated. For them, the 1.0 tag required for product B release, will not be the same
as the 1.0 tag required for the product A release. This implies that for some packages, release
1.0 of product A, is different from release 1.0 of product B.

Requirement: there shall be a 1 to 1 correspondence between software products andGitHub
packaged. If this is not possible, each GitHub package shall be included in only one software
product. Note also that, each GitHub package used for building, unit testing and packaging
the software products shall not be included in the SW product itself, but versioned separately
and be part of the environment definition. See section 2.1.

D R A F T 20 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-05-08

A.2.2 Code Fragmentation

The high number of packages causes problems in that it :

• increases the build time: each Git package needs to be build each time.

• increases the release time: all Git packages need to be released each time.

• increases the failure probability: the tooling may be affected by network glitch or sim-
ilar technical issues. This may lead to the failure of the build/release process in a non
deterministic way.

Moving 3rd party libraries to conda environment, will reduce this problem. However this
requires proper management of the conda environment.

Requirement: the number of Git packages shall be kept low. DM-CCB shall approve each time
a new package is introduced, since this has an impact on the maintainability of the system.
All non DM 3rd party libraries, shall also not be part of the stack, if not requiring source code
changes.

A.2.3 Binaries Persistence

Each time we do a build, all Git packages and rebuild. However, if the package is already
installed in the local environment and is not affected by any changes, it will not be rebuild.

In reality, once a package has been built, and the corresponding binaries have been made
available, for a specific platform (linux, osx, etc), in the package repository (https://eups.
lsst.codes/), it shall be possible for all the downstream users, to use it without building it
again.

A GitHub package should be rebuild, only in case its source code has changed, or one of its
dependencies has changed (in case of semantic versioning, only for breaking changes that
increase the major version).

Requirement: It shall be possible to resolve the package binaries from https://eups.lsst.

codes/ if available, instead of building them from the source code.

This problem is not blocking on the release process, but its resolution permits optimization
of the build.

D R A F T 21 D R A F T

https://eups.lsst.codes/
https://eups.lsst.codes/
https://eups.lsst.codes/
https://eups.lsst.codes/

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-05-08

B Proposed Improvements

Given the definitions in section 2 and the current status and problems described in appendix
A, the following way forward is proposed.

• identify a software products that requires delivery soon. A possible candidate could be
the Calibration pipeline which is now part of the Science Pipelines, to be used soon for
AuxTel commissioning. The software product shall be defined using ametapackage that
includes only the Git packages relevant to it. Git packages that are shared with others
software products, need to be included in a different metapackage,

• identify all the Git packages that are shared with other software products and included
them in a library metapackage. This library metapackage is a software product itself and
needs to be managed and released separately.

• update the build system in order to be able to resolve the library from the binary repos-
itory (EUPS)

• update the tooling to deal with tagging (code-kit) and continuous integration (Jenkins
scripts).

All the git packages included in a software product metapackage will be built and released all
at the same time, as it is done now for the full Science Pipelines.

Ametapackage which depends on a library metapackage will resolve the library binaries from
the EUPS binary repository. Dependencies between metapackages shall be handled differ-
ently, for example using a requirements.txt file, than the usual EUPS requirements that are
specified the the ups/gitpackagename.table. The metapackage table file shall specify all Git
packages included in the software product.

The above changes shall not affect the possibility to release the Science Pipelines as it is cur-
rently done.

D R A F T 22 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-05-08

C References

References

[SQR-016], Economou, F., 2018, Stack release playbook, SQR-016, URL https://sqr-016.lsst.

io

[LDM-148], Lim, K.T., Bosch, J., Dubois-Felsmann, G., et al., 2018, Data Management System
Design, LDM-148, URL https://ls.st/LDM-148

[LDM-294], O’Mullane, W., Swinbank, J., Jurić, M., DMLT, 2018, Data Management Organization
and Management, LDM-294, URL https://ls.st/LDM-294

D Acronyms used in this document

Acronym Description
AP Alert Production
B Byte (8 bit)
CAM CAMera
CCB Change Control Board
CI Continuous Integration
DM Data Management
DMCCB DM Change Control Board
DMTN DM Technical Note
DRP Data Release Production
EUPS Extended Unix Product System
LDM LSST Data Management (document handle)
LSST Large Synoptic Survey Telescope
OSX Macintosh Operating System
PR Pull Request
RFC Request For Comment
SQR SQuARE document handle
SW Software (also denoted S/W)
T/CAM Technical/Control (or Cost) Account Manager
YAML Yet Another Markup Language

D R A F T 23 D R A F T

https://sqr-016.lsst.io
https://sqr-016.lsst.io
https://ls.st/LDM-148
https://ls.st/LDM-294

	Introduction
	Applicable Documents

	Definitions
	Environment
	Software Product
	Dependencies
	Software Release
	Binary Packages
	Distribution
	Versioning and Naming
	Branch Naming

	Change control
	Issue Management
	Release Note

	Software Release Procedure
	Development
	Nightly and Weekly builds
	Announcement
	First Release Candidate
	Other Related Artifacts
	Release Candidates Validation
	Resolving Problems
	Additional Release Candidates
	Final Release

	Patch Releases
	Incorporating third party code
	Support
	Testing
	Migration

	Status and Problems
	Status of the implementation
	Packaging System
	Distribution System
	SW Products Identification
	Environment
	Build Tools

	Open Problems
	SW Product Composition
	Code Fragmentation
	Binaries Persistence

	Proposed Improvements
	References
	Acronyms used in this document

