
Draf
t

Large Synoptic Survey Telescope (LSST)
Data Management

DM Release Process

Gabriele Comoretto

DMTN-106

Latest Revision: 2019-02-15

D R A F T

Abstract

Release procedure applicable to all Data Management SW products.

LARGE SYNOPTIC SURVEY TELESCOPE

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-02-15

Change Record

Version Date Description Owner name
2019-02-04 DM Release Process Gabriele Comoretto

D R A F T ii D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-02-15

Contents

1 Introduction 1

1.1 Applicable Documents . 1

2 Definitions 2

2.1 Software Product . 2

2.2 Dependencies . 2

2.3 Software Release . 2

2.4 Binary Package . 3

2.5 Distribution . 3

2.6 Versioning and Naming . 4

2.6.1 Branch Naming . 4

3 Change control 5

3.1 Issue Management . 5

4 Release Note 6

5 Software Release Procedure 7

5.1 Development . 7

5.2 Daily and Weekly builds . 7

5.3 Announcement . 8

5.4 First Release Candidate . 8

5.5 Other Related Artifacts . 9

5.6 Release Candidates Validation . 9

5.7 Resolving Problems . 10

5.8 Additional Release Candidates . 11

5.9 Final Release . 11

6 Patch Releases 12

A References 13

D R A F T iii D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-02-15

B Acronyms used in this document 13

D R A F T iv D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-02-15

DM Release Process

1 Introduction

The scope of this document is to provide a release procedure valid for all Software Products
in the LSST Data Management subsystem. The procedure as presented here can be tailored
accordingly to specific SW product needs.

1.1 Applicable Documents

LDM-148 DM Architecture
LDM-294 DM Project Management Plan

D R A F T 1 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-02-15

2 Definitions

Following definitions are considered in the scope of this document.

2.1 Software Product

A Software Product is a component of the subsystem (DM) product tree. A release is made
on a SW product.

A SW Product should correspond to a single repository (git package). In the case of DM a SW
Product is implemented in multiple git packages. A Github metapackage is used to identify a
SW Products. All git packages of a SW product will be dependencies in a Github metapackage
and released at the same time.

A Software product lives in a software repository. The LSST software repository is github.

2.2 Dependencies

Considering that a SW Product is identified by ametapackage, each package can depend from:

• other metapackages: to resolve Github packages released in other SW products (meta-
packages)

• a Github package contained in the same metapackage, and therefore part of the same
SW product

All metapackages onwhich a SWproduct depends, need to be released before the SWproduct
release is done.

The dependency information is provided in each git package, in specific files, that may vary
depending on the build system. It is also considered part of the source code.

2.3 Software Release

A software release is identified by a TAG in the SW repository and it is documented with a
software release note. The TAG is created on a release branch after manual checks on the
last release candidate.

D R A F T 2 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-02-15

The tag in the Github repository and the software release note should be sufficient for a de-
veloper to build the binaries and execute the software.

2.4 Binary Package

A binary package is a package containing executable binaries for the corresponding release.
It is created building the SW provided in the release Tag. Binary packages can be created to
support multiple platforms (such as linux, osx, windows) if required.

Binaries in general should be generated only once, and made available for their use by de-
pendent software or for deployment.

The majority of DM software is using Eups for binary packaging. Other platforms can be con-
sidered, like for example conda or pypi. Software products implemented in java are using
jar/war binary packaging. 1

2.5 Distribution

A distribution is a collection of binary packages to be deployed together.

A distribution can be used for different purposes:

• make available software releases for operations or commissioning

• test (integration, validation, operation rehearsals) software releases

• provide software releases to external collaborators.

DM software products are distributed using docker.

1So far there are a few technologies used to handle binary packages. It is recommended to assess and optimize
them, converging to use only one. Conda seems to be so far becoming a standard.

D R A F T 3 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-02-15

2.6 Versioning and Naming

DM software is versioned using two digits separated by a ”.”. For example:

16.0

has been the last science pipelines release in 2016. The first number is the major version and
the the second number is the minor version.

It is recommended to switch to Semantic Versioning, in order to improve dependency man-
agement.

2.6.1 Branch Naming

In order to clearly distinguish release branches from tags and other branches, following nam-
ing is suggested:

b.<M>.<m>

whereM is the major version andm is the minor version.

D R A F T 4 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-02-15

3 Change control

The DMCCB is in charge of planning all major and minor releases. The DM Release Plan LDM-
564 will provide the expected schedule, based on P6 milestones.

Changes to the release plan need to be proposed to the DMCCB using RFC Jira issues.

TheDMCCB is also in charge of approving patch release requests. A patch release has to be re-
quested to the DMCCB using RFC Jira issues, specifying which fixes, DM issues, are requested
to be included in the CCB.

This process is documented in LDM-294, section 7.4.

3.1 Issue Management

The release is identified in Jira using a release issue.

All issues to be included in a release shall be added as blocking to the release issue.

It is recommended to use the field Fix in Version(s) provided by Jira. This requires changes in
the DM Jira project.

D R A F T 5 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-02-15

4 Release Note

The release note documents the content of a release.

Following information are provided:

• Installation instructions. To be provided manually by the person responsible for the
release, usually the product owner.

• List of jira issues included in a release. This information can be extracted from Github.
Completed epics will be highlighted in the first place. Other issues to be listed for docu-
mentation purpose.

• Narrative section describing the content of the release. To be provided manually be the
person responsible for the release, usually the product owner.

• Technical information like tag in github, dependencies, binary packages, etc. To be ex-
tracted automatically from Github or other tools.

Once the field Fix in Version(s) has been introduced in the Jira DM project, it shall be made
consistent with the release note (automatically).

D R A F T 6 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-02-15

5 Software Release Procedure

This release procedure has been derived from the Stack release playbook SQR-016.

5.1 Development

Development activities are not part of the release process, but are the starting point for a
stable and reliable master branch in all Github software packages.

Development activities follow the (LSST Data Management) developer guide. All changes are
done on ticket branches and reviewed using the Pull Request mechanism before merging to
master. Ticket branches are removed once merged.

Each time a change is merged into master, the following activities should be performed:

• continuous integration build of the Github software package (SW product)

• if unit tests pass, generate binary packages

• build downstream dependencies: CI build on SW products that depend from the newly
build SW product.

At the moment, continuous integration is done prior to merge the changes into master, us-
ing the ticket branch. Binary packages (eups) and docker images for distribution are made
available with the nightly and weekly builds (see next section 5.2).

5.2 Daily and Weekly builds

Daily and weekly builds are performed in order to have fixed references in time. They ensure
periodically that no breaking changes have been introduced. They can be used as a starting
point for a development activity or, more relevant for this document, as starting point for a
release.

Daily builds do not generate a tag in the Github repositories. When a weekly build is done, a
corresponding tag in the Github repository is created. Despite weekly builds are considered
releases for Github, from a release management point of view they are not.

D R A F T 7 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-02-15

5.3 Announcement

The preparation of the next release is announced using a community post.

This has to be done few days before the release activity starts.

In this way, all contributors will be able to provided feedback, like for example additional
issues expected to be included in the release. Base on the received feedback, DMCCB can
take corrective actions such as delaying the release.

5.4 First Release Candidate

The first release candidate on a release is created when:

• all issues that are suppose to be included in it have been implemented and merged into
master.

• a weekly build has been completed successfully.

• the completed weekly build has been proved to be a valid starting point for the release.
Criteria for this can include regression, scientific performances, etc.

The weekly build is the starting point for the release process.

The creation of the first release candidate is done using the Jenkins job:

releases/official-release

with the following parameters:

• SORUCE_GIT_REFS: <weekly tag> (for example w.2018.52)

• RELEASE_GIT_TAG: <Release Candidate> (for example v.17.0.rc1)

• O_LATEST: false

If the Jenkins job is not available, the release candidate should be created manually:

D R A F T 8 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-02-15

• creating the release branch from the last weekly build (codekit, functionality still to be
added, branches can be created manually)

• creating a release candidate (codekit)

• creating the binaries packages

• creating the distribution package

As of today, themajority of these steps are integrated in Jenkins jobs. Thismakes it impossible
to complete the release process without the use of the continuous integration system.

5.5 Other Related Artifacts

Together with the creation of the release candidate, other artifacts may need to be branched,
and possibly have a first release candidate also:

• documentation: release note are usually part of a documentation endpoint, similar to
pipelines.lsst.io (for science pipelines). In order to consolidate all information relevant
for the new release, a corresponding branch need to be created.

• environment, for example conda environment definition

• others; still referring to the science pipelines, the package where newinstal.sh is devel-
oped, need to have a corresponding branch

5.6 Release Candidates Validation

The release candidate needs to be validated, ensuring that it is consistent with what expected.

In an ideal case, a test campaign following a specific test plan should be conducted, demon-
strating that the release candidates, and therefore the forthcoming release, is behaving as
expected.

Practically, the validation in many cases can be:

• installation/configuration of the binaries packages, or distribution image; usually done
manually

D R A F T 9 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-02-15

• inspect of the installation, that all expected files and configuration are there

• execution of some demo package available case by case depending of the SW product

• try some use cases in order to prove that the release candidate is behaving properly

• ask downstream users to act as beta testers.

For science pipelines, a characterization report is produced, in order to document the release
outputs. This is a new document created for each major release.

5.7 Resolving Problems

In case problems are found during the validation, a DM issue needs to be opened in Jira. This
issue shall follow the usual development process as described in the developer guide. The fix
will be first implemented in a ticket branch, reviewed andmerged to master. Once the fix has
been proved to work, it can be backported to the release branch. Backporting mechanism
has to be documented in the developer guide, however it is here summarized:

• given an issue DM-XXX fixed on a ticket branch tickets/DM-XXX andmerged tomaster (the
ticket branch shall not be deleted in this case, until the backporting is concluded)

• given a release branch created based on a release candidate, or on a weekly tag

• a specific backporting ticketDM-YYYhas to be created, and a corresponding ticket branch
based on DM-XXX issue

• backport is done from the backporting ticket branch, using the following command:

git rebase --onto <RELEASE_BRANCH>

– Note that this will rebase the backporting branch to the release branch.

• open a PR from the ported ticket branch to merge into the release branch

• merge the ported branch into the release branch when the PR is approved

• remove the ported branch and the original branch

D R A F T 10 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-02-15

Note that porting mechanism is a development activity, under the responsibility of the devel-
opment team, and therefore needs to be documented in the developer guide and removed
from this document.

In a special case, that an issue cannot be fixed on master, the ticket branch can be opened
based on the release branch.

The porting can be applied also in case that an issue, implemented onmaster after the release
branch has been cut, has to be included in the release.

The DMCCB has to overview the backporting of issues to the release branch, and take correc-
tive actions if needed. Backportingmay require a considerable use of development resources
or delay in the final release availability.

5.8 Additional Release Candidates

Once one or more issues have been fixed on the release branch, a new release candidate has
to be generated using the Jenkins job official-release using following parameters:

• SOURCE_GIT_REFS: <BranchId> <Previous RC>. (for example b.17.0 v17.0.rc1)

• RELEASE_GIT_TAG: <new RC> (for example v17.0.rc2)

• O_LATEST: false

5.9 Final Release

Once a final release candidate has been identified, the final release can be created.

This has to be done using the Jenkins job official-release as previously done for the release
candidates, with the following parameters:

• SOURCE_GIT_REFS: <Final RC>. (for example v17.0.rc2)

• RELEASE_GIT_TAG: <Release Tag> (for example 17.0)

• O_LATEST: true

D R A F T 11 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-02-15

6 Patch Releases

In the case that the DMCCB approves a proposed patch release, the process shall be:

• create the release branches from the available release tags on the Github packages im-
pacted by the fixes

• backport the requested issues

• create a release candidate, for example v17.0.1.rc1 using the the same approach ex-
plained above (5.8)

• validate the release candidate

• fix eventual problems found in the release candidate and repeat the last 2 steps until a
valid release candidate is found

• create a final release as described above (5.9).

D R A F T 12 D R A F T

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-02-15

A References

References

[LDM-148], Lim, K.T., Bosch, J., Dubois-Felsmann, G., et al., 2018, Data Management System
Design, LDM-148, URL https://ls.st/LDM-148

LSST Data Management, LSST DM Developer Guide, URL https://developer.lsst.io/

[LDM-294], O’Mullane, W., Swinbank, J., Jurić, M., DMLT, 2018, Data Management Organization
and Management, LDM-294, URL https://ls.st/LDM-294

B Acronyms used in this document

Acronym Description
CCB Change Control Board
DM Data Management
DMCCB DM Change Control Board
DMTN DM Technical Note
LDM LSST Data Management (document handle)
LSST Large Synoptic Survey Telescope
RFC Request For Comment
SW Software (also denoted S/W)

D R A F T 13 D R A F T

https://ls.st/LDM-148
https://developer.lsst.io/
https://ls.st/LDM-294

	Introduction
	Applicable Documents

	Definitions
	Software Product
	Dependencies
	Software Release
	Binary Package
	Distribution
	Versioning and Naming
	Branch Naming

	Change control
	Issue Management

	Release Note
	Software Release Procedure
	Development
	Daily and Weekly builds
	Announcement
	First Release Candidate
	Other Related Artifacts
	Release Candidates Validation
	Resolving Problems
	Additional Release Candidates
	Final Release

	Patch Releases
	References
	Acronyms used in this document

