LARGE SYNOPTIC SURVEY TELESCOPE

Large Synoptic Survey Telescope (LSST)
Data Management

DM Release Process

Gabriele Comoretto
DMTN-106

Latest Revision: 2019-02-05

DRAFT

Abstract

Release procedure applicable to all Data Management SW products.

557

LARGE SYNOPTIC SURVEY TELESCOPE

DM Release Process DMTN-106 Latest Revision 2019-02-05
Change Record
Version | Date Description Owner name
2019-02-04 DM Release Process Gabriele Comoretto

DRAFT ii DRAFT

557

LARGE SYNOPTIC SURVEY TELESCOPE

DM Release Process

Contents

1 Introduction

DMTN-106 Latest Revision 2019-02-05

1.1 Applicable DOCUMEeNtS o v oo e e e e e 1

2 Definitions

R.1 Software Product oo v e

R.1.1 Software Metackaged
D.2 DEPENAENCIES . « v v v v e e e e e e
R.3 Software Releasd

R.4 Software Binary Packageo
R.5 DIStriDULION . v v e e e e e e e e
R.6 VErsioningot

B Change control

A W W N M N N DN

(]

B.1 Issue Management o o oot 5

4 Release Note

5 Software Release Procedure

5.1 Developmentot
5.2 Dailyand Weekly builds o oo

5.4 Consolidation oo v i
5.5 Release Candidates Validation
5.6 Final Release o o oo 1

A References

B Acronyms used in this document

7
7
7
5.3 ANNOUNCEMENT © « « v v v o e e e e e e e e e e e e e e e e 7
8
9
0

DRAFT

DRAFT

557

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-02-05

DM Release Process

1 Introduction

The scope of this document is to provide a release procedure technicalities valid for all Soft-
ware Products in the Data Management LSST subsystem. The procedure as presented here
can be tailored accordingly to specific SW products needs.

1.1 Applicable Documents

When applicable documents change a change may be required in this document.

DM-148 DM Architecture
DM-294 DM Project Management Plan

DRAFT 1 DRAFT

557

LARGE SYNOPTIC SURVEY TELESCOPE

DM Release Process DMTN-106 Latest Revision 2019-02-05

2 Definitions
Following definitions are considered in the scope of this document.

2.1 Software Product

A release is made of a SW product documented in the product tree. A SW Product should
correspond to a single repository (git package). In the case of Issta SW corresponds to multiple
git packages but the single repository can be mimicked using a metapackage.

2.1.1 Software Metackages

The metapackage depends from the git packages that are considered part of the SW product.

In order to clearly identify all git packages included in a SW product, they have to be listed as
direct dependencies in the metapackage.

Each git software package has to be included only in one metapackage.

2.2 Dependencies

Considering the fact that a SW Product is identified with a metackage, there are two types of
dependencies in a git package:

+ dependencies to metapackage, to resolve Github packages released in other SW prod-
ucts (metapackages)

+ dependencies to a Github package contained in the same metapackage, and therefore
part of the same SW product

2.3 Software Release

A software release is identified by a TAG in the SW repository and it is documented with a
software release note. The TAG is created on a release branch after manual checks on the
last candidate.

All metapackages from which a SW product depends, need to be released before the SW
product release is done.

DRAFT 2 DRAFT

557

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-02-05

2.4 Software Binary Package

Asoftware binary package is a package containing executable binaries created building the SW
contained in the release Tag. Binary packages can be created to support multiple platforms
(such as linux, osx, windows) if required.

2.5 Distribution

A distribution is a collection of binary packages to be deployed together. A distribution can
be used for different purposes:

* make available software releases for operations
* test (integration, validation, operation rehearsals) software releases

+ provide software releases to external collaborators.

DRAFT 3 DRAFT

557

——— | ARGE SYNOPTIC SURVEY TELESCOPE

DM Release Process

2.6 Versioning

Major, Minor, Patch.

Semantic Versioning.

DMTN-106

Latest Revision 2019-02-05

DRAFT

DRAFT

557

LARGE SYNOPTIC SURVEY TELESCOPE

DM Release Process DMTN-106 Latest Revision 2019-02-05

3 Change control

The DMCCB is in charge of the major and minor release planning. The DM Release Plan, LDM-
564, will provide the expected reschedule, based on P6 milestones.

Changes to the release plan need to be proposed to the CCB using RFC Jira issues.

The DMCCB is also in charge of approving patch release requests. A patch release has to be
requested to the DMCCB using RFC Jira issues, specifying which which fixed, DM issues, are
requested to be included in the CCB.

This process is documented in LDM-294, section 7.4.
3.1 Issue Management

Issues to be included in a release shall be added as blocking to the release issue.

The field Fix in Version(s) should be used. This requires changes in the DM Jira project.

DRAFT 5 DRAFT

557

LARGE SYNOPTIC SURVEY TELESCOPE
DM Release Process DMTN-106 Latest Revision 2019-02-05

4 Release Note

The release note documents the content of a release.

Following information are provided:

+ Installation instructions. To be provided manually by the release responsible, usually
the product owner.

+ List of jira issue included in a release. This information can be extracted from Github.
Completed Epics will be highlighted.

* Narrative section describing the content of the release. To be provided manually be the
release responsible, usually the product owner.

+ Technical information like tag in github, dependencies, binary packages, etc. To be pro-
vided automatically.

DRAFT 6 DRAFT

557

LARGE SYNOPTIC SURVEY TELESCOPE

DM Release Process DMTN-106 Latest Revision 2019-02-05

5 Software Release Procedure

This release procedure has been derived generalizing the Stack release playbook ?.

5.1 Development

Development activities are not part of the release process, but are the starting point for a
stable and reliable master branch in all Github software packages.

Development activities follows the (LSST Data Management). All changes are done on tickets
branches and reviewed using the Pull Request mechanism before merging to master. Ticket
branches are removed once merged.

Each time a change is merged into master following activities should be performed:

+ continuous integration build of the Github software package (SW product)
« if unit tests pass, generate binary packages

* build downstream dependencies: Cl build on SW products that depend from the newly
build SW product.

5.2 Daily and Weekly builds

Daly and weekly are done in order to have fixed reference in each package. They can be used
as a starting point for a development activity or, more relevant for this document, as starting
point for a release.

Daily builds, do not generate a tag in the git repository. Weekly builds corresponds to a tagin
the Github repository. Despite for Github these builds are considered releases, from a release
management point of view they are not.

5.3 Announcement

The preparation of the next release is announced using a community post.

This has to be done few days before the planned starting of the release. All contributors
can provided feedbacks and the DMCCB can take corrective actions in case there are still

DRAFT 7 DRAFT

557

LARGE SYNOPTIC SURVEY TELESCOPE

DM Release Process DMTN-106 Latest Revision 2019-02-05

outstanding issues to be included in the release.

5.4 Consolidation

This is the first step of the release process. It is done when:

+ all issues that are suppose to be included in the next release have been implemented
and merged into master.

+ a weekly build has been completed successfully.

Last weekly build is the starting point for a release. In other words: the first release candidate
of a release is produced starting from a weekly build.

The creation of the first release candidate is done using the Jenkins job (if available) or exe-
cuting manually:

+ creating the release branch from the last weekly build (codekit, functionality still to be
added, branches can be created manually)

* creating a release candidate (codekit)
* creating the binaries packages

* creating the distribution package

At today, the binaries packages are stored using eups in the eups binaries repository. Eups
package is also used to orchestrate dependencies between packages.

This imply that the manual sequence to use is slightly different and more complex. itis there-
fore recommendable to use an automatic process implemented in Jenkins.

Together with the creation of the release branch on the git packages included in the software
product, other artifacts may need to be branched, and possibly have a first release candidate
also:

+ documentation: release note are usually part of a documentation endpoint, similar to
pipelines.Isst.io (for science pipelines). In order to consolidate all information relevant
for the new release, a corresponding branch need to be created.

DRAFT 8 DRAFT

557

LARGE SYNOPTIC SURVEY TELESCOPE

DM Release Process DMTN-106 Latest Revision 2019-02-05

* conda environment, is relevant

+ others. Still referring to the science pipelines case, the newinstal.sh Github package need
to have a corresponding branch

5.5 Release Candidates Validation

The release candidate need to be validated, ensuring that it is consistent with what expected.

In an ideal case, a test campaign following a specific test plan should be conducted, demon-
strating that the release candidates, and therefor the forthcoming release, is behaving as
expected.

Practically speaking, the validation in many cases can just be:

installation/configuration of the binaries packages, or distribution image; usually done
manually

inspect of the installation, that all expected files and configuration are there
+ execution of some demo package available case by case depending of the SW product

* try some use cases in order to prove that the release candidate is behaving properly

In case problems are found, a DM issue need to opened in Jira. This issue shall follow the
proper development cycle, been firstimplemented in a ticket branch, reviewed and merged to
master. Once the issue has been proved to work on master can be backported to the release
branch. Backporting mechanism has to be documented in the developer guide, however it is
here summarized:

+ given an issue DM-XXX fixed on a ticket branch tickets/DM-XXX and merged to master (the
ticket branch shall not be deleted in this case, until the backporting is concluded)

* backport using

git rebase --onto <RELEASE_BRANCH>

DRAFT 9 DRAFT

557

LARGE SYNOPTIC SURVEY TELESCOPE

DM Release Process DMTN-106 Latest Revision 2019-02-05

- Note that this will move the original branch based on master to be based on the
the release branch. In case you want to keep the old branch, a new branch has to
be created from the original ticket branch. Ideally this can be done using a new DM
Jira issue, where the porting is requested.

* open a PR from the ported ticket branch to merge into the release branch

* merge the ported branch into the release branch when the PR is approved

Note that porting mechanism is a development activity, under the responsibility of the de-
velopment team, and therefor need to be documented properly in the developer guide and
removed from this document.

In a special case, that an issue cannot be fixed on master, the ticket branch can be opened
based on the release branch.

Once the fixes have been implemented in the release branch, a new release candidate can be
created, and then verified.

The porting can be applied also in case that an issue, implemented on master after the release
branch has been cut, has to be included in the release.

The DMCCB has to overview the issues backported on the release branch, and take correc-
tive actions if needed, since backporting may required a considerable use of development
resources or delay in the final release availability.

5.6 Final Release

Once a final release candidate has been identified, the final release can be created.

DRAFT 10 DRAFT

557

LARGE SYNOPTIC SURVEY TELESCOPE

DM Release Process DMTN-106 Latest Revision 2019-02-05

A References

References

[LDM-148], Lim, K.T., Bosch, J., Dubois-Felsmann, G., et al., 2018, Data Management System
Design, LDM-148, URL https://1s.st/LDM-148

LSST Data Management, LSST DM Developer Guide, URL https://developer.lsst.io/

[LDM-564], O'Mullane, W., Economou, F., Jenness, T., Loftus, A., 2018, Data Management Soft-
ware Releases for Verification/Integration, LDM-564, URL https://1s.st/LDM-564

[LDM-294], O'Mullane, W., Swinbank, J., Juri¢, M., DMLT, 2018, Data Management Organization
and Management, LDM-294, URL https://1s.st/LDM-294

B Acronyms used in this document

Acronym | Description

CCB Change Control Board

Cl Configuration Item

DM Data Management

DMCCB DM Change Control Board

DMTN DM Technical Note

LDM LSST Data Management (document handle)
LSST Large Synoptic Survey Telescope
SW Software (also denoted S/W)

TCAM Technical Control Account Manager
TN Technical Note

DRAFT

11

DRAFT

https://ls.st/LDM-148
https://developer.lsst.io/
https://ls.st/LDM-564
https://ls.st/LDM-294

	Introduction
	Applicable Documents

	Definitions
	Software Product
	Software Metackages

	Dependencies
	Software Release
	Software Binary Package
	Distribution
	Versioning

	Change control
	Issue Management

	Release Note
	Software Release Procedure
	Development
	Daily and Weekly builds
	Announcement
	Consolidation
	Release Candidates Validation
	Final Release

	References
	Acronyms used in this document

